
Practical Considerations When Instrumenting Applications With JMX

Tom Lubinski
SL Corporation

Corte Madera, CA
March 18, 2008

Abstract – There are many sources of information about
best practices using JMX, focused primarily on common
usage conventions and design patterns. However, the use of
JMX in custom application monitoring systems brings
with it an array of unique challenges involving the
aggregation, analysis, and visualization of real-time data.
This paper discusses practical issues regarding data
content and design of MBeans for optimal use in such
systems. Some commonly overlooked requirements are
explored and recommendations made for minimizing
client-side development efforts.

I. INTRODUCTION
With any new technology, best practice documents are

invaluable in helping developers avoid common errors and to
design quality systems. Much literature is already available
regarding best practices for using Java Management
Extensions (JMX) in monitoring and management
applications. Popular J2EE application servers, such as BEA
WebLogic and JBoss, have used JMX for years to manage and
monitor the health and status of their many components.

These large scale systems were built using an early
version of Java (1.4) and add-in libraries of JMX classes. The
extra steps involved in using JMX limited its use to systems in
which the benefits of exposing monitoring and management
information outweighed the cost of developing and supporting
the additional code – JMX was simply not in common use.

With the release of Java 1.5, JMX is built-in and readily
usable in even the smallest of applications. It is now a simple
task to instrument nearly any application and expose important
monitoring metrics. Custom applications, involving many
processes and multiple middleware components, may be
effectively managed from a remote console. As a result, there
has been an explosion of data exposed through JMX and
available for analysis and presentation.

As use of JMX expands, one would expect that there
would be mistakes made and lessons learned the hard way.
Software developers are usually much more familiar with their
own application domain and are not often experts in
monitoring and management tools.

The author of this article and SL Corporation have over
20 years of experience with monitoring and visualization
applications, with particular expertise in Java. The company’s
Enterprise RTView product has been specially adapted to deal

with real time data produced by JMX-enabled applications and
has features to compensate for many overlooked requirements.

This article discusses errors that have been seen repeatedly
in JMX implementations regarding the content and design of
data structures known as MBeans. Common JMX best-practice
knowledge is briefly reviewed to provide some initial context.
This is followed by a detailed discussion about issues that arise
when custom application monitoring requirements grow to
include aggregation, analysis, and visualization in real time.
Recommendations are offered that that may help users make
optimal use of JMX in these situations.

II. COMMON BEST PRACTICES
JMX is a very general solution framework and does not

define specific monitoring or management data structures.
This puts the burden on developers to establish conventions
themselves in order to consistently extract and process
information so it can be analyzed and visualized.

Best practice documents for JMX typically suggest
adherence to common standards regarding naming
conventions, data types, deployment constraints, portability,
and so on. These suggestions fall into several categories:

A. MBean usage conventions
Specific conventions should be applied to MBean names

and JMX data types in order to implement MBeans that are
portable, i.e., commonly available JMX client applications can
handle them without issue. Generally, this means one should
follow the guidelines for using standard domain and key
names (such as type= and name=) and OpenMBean data types
instead of custom Java classes (for ease of deployment). These
suggestions are presented in depth in SUN’s discussion of
JMX best practices[1].

MBean names should be predictable and used in a
consistent manner when representing a hierarchy. Most
importantly, one should define the same attribute schema for
all beans of the same type or at the same level in a hierarchy.
It is obvious that a violation of this principle will result in
complications for client applications.

Use Standard MBeans wherever possible; these are the
simplest to implement and the easiest to maintain, since JMX
implicitly understands data types and runtime behavior simply
from the Java source directives. There are situations where
Dynamic and/or Model MBeans may be necessary, but their
use should be kept to a minimum [1].

 2

B. Follow established design patterns
Use well-established design patterns for defining MBeans.

Several of these are described in Design Patterns for JMX and
Application Manageability[2]. Often, the motivation behind
these patterns is to shield users of JMX MBeans from the
details of their implementation or even their attribute structure.
This permits the developer to change the details of the MBean
without affecting client applications.

Other patterns are useful in maintaining separation
between the monitoring and management code contained in
the JMX MBean, and the business logic in the application.
There are significant advantages in terms of maintainability if
the application being monitored has little or no knowledge of
how the monitoring is done.

There is also much written about Aggregator beans as a
way to minimize the number of MBeans that a client has to
connect to and query. When the number of beans reaches into
the thousands, performance issues come into play. The
Aggregator pattern is one way to improve performance by
minimizing MBean access.

C. Model after established systems
The most popular J2EE application servers make

extensive use of JMX as a tool for managing their internal
functions. These very large systems provide solid ground for
testing implementation techniques for JMX MBeans. As such,
they provide excellent examples to follow.

In the administration system for the BEA WebLogic
Server, there can be over 1000 different MBean instances.
MBeans have been developed to address just about every
variation of monitoring and management problem. By
exploring the techniques used in this system, much can be
learned and applied to your own requirements. The BEA JMX
system is especially complete when it comes to the use of
notifications for monitoring system performance [3].

The J2EE Management Specification JSR-77 [4] defines a
Management Model and provides useful guidelines for data
types and implementation patterns. Effective management and
monitoring involves states, statistics, metrics, relationships,
and more. Understanding these information structures can be
helpful in developing quality systems.

III. MONITORING, ANALYSIS, AND VISUALIZATION ISSUES

The best practices outlined above are useful, but they
don’t fully address issues that come up in large scale
monitoring applications involving visualization and, in
particular, dynamic analysis of real-time data. Requirements,
such as trending or slice-and-dice data analysis, are often
afterthoughts. It is important to understand these issues up-
front and develop an implementation plan that minimizes the
work required to present the data. Often, this can influence the
design of the MBeans developed for such an application.

The best way to illustrate this is with a concrete example.
In this case, consider developing a monitoring system for a

sample application, a simple message switching system. This
example is representative of many applications. Similar data
structures are relevant for monitoring performance of routers,
message boxes, caching systems, object databases, even CEP
engines. Shared among them is the desire to use JMX for
instrumentation.

Our sample device supports multiple channels for
message traffic and collects metrics and statistics about its
operation in real time, so performance can be optimized. Here
is a simple data structure containing information that might be
exposed via a JMX MBean for a single channel:

ChannelInfo Data

Channel Msgs
Sent

Msgs
Rcvd

Bytes
Queued

Max
Bytes Statistics

12 12549 9613 55040 2349128 Proc=124ms,
Wait=37ms

The Total Msgs Sent/Rcvd counts would typically be

represented as a long integer since the number could grow large
over time. The memory usage could be stored as an integer
since the Java memory limit on many machines is 1 GB, so 32
bits will handle that effectively. The other data – Channel ID
and Statistics – are stored as strings.

This MBean would be assigned a domain name, like
“ChannelManager”, and a key, like “type=ChannelInfo”. Each
channel would create a unique MBean with two additional key
components, “server=XX” and “channel=NN”, to indicate the
server on which the channel is running and the ID of the
channel itself. The full name of the bean used to return
information about channel 12 on Server1 would be:

ChannelManager:type=ChannelInfo,server=Server1,channel=12

Additionally, we might have other information related to

configuration, perhaps not as dynamic. This might include an
IP Address and Port, and a count of active connections:

NetworkInfo Data

Channel IP Address Port Connections
12 192.168.2.103 4901 17

From a developer perspective, the information collected

here is obtained from a different source and, as such, it is
natural to have a separate MBean. It would have a different
type key, “type=NetworkInfo”, indicating it is network-related
data. The full name for this bean might be:

ChannelManager:type=NetworkInfo,server=Server1,channel=12

Thus we have two simple MBeans, a ChannelInfo and a
NetworkInfo bean. These map closely to the internal data
structures of the system, so it is easy and quick for the
developers to implement.

At this point, things are looking good. Lots of information
is available for monitoring. Typically, an HTML page is
provided as part of the system to view each of the MBeans.
The system runs, the data shows up in the HTML page and
everyone (especially marketing) is excited about the new

 3

application monitoring capability available with this new
version of the company’s product.

A. Not so fast … there clouds on the horizon
The first indication of a problem shows up when

customers attempt to monitor the system in a useful way
against live data. At first, looking at each channel via the
HTML interface is exciting… there is so much data to explore
and users see things they’ve never seen before about the
behavior of the system.

But looking at one bean at a time in an HTML page gets
old really fast, especially once you have more than just a few
channels. Imagine how difficult this is if one of the servers has
100 channels running on it. It is practically impossible to
extract useful information from the system this way.

It quickly becomes apparent that to fully understand the
workings of the system, one must be able to perform
calculations on the incoming data in aggregate. There must be
a way to sum messages counts across all channels, or take an
average across servers. Metrics can be dumped to a database
for later analysis, but this is not a real-time solution by any
means.

One solution is to take advantage of the advanced
capability provided by JMX to access multiple MBeans using
wildcard “*” syntax. In other words, make a request for the
names of all beans matching a certain pattern, such as:

ChannelManager:type=ChannelInfo,server=Server1,*

This request will return the names of all ChannelInfo
beans on Server1 for all channels. The data from each can be
compiled into a single table, one row per bean. This seems like
it will work, but there is a big problem lurking.

B. Identify yourself…or else
In our sample MBean, it seemed natural for the developer

to include the Channel ID in the data – on a single server, the
internal data structures contain the ID of the channel being
implemented. However, since all channels on a server live
within the context of that server, it did not seem reasonable to
include the name of the server as part of the data.

In fact, from the developer’s perspective, it made sense to
minimize the data to be transferred and leave out the server
name – since the bean name itself contains the server info, it
shouldn’t be necessary to include it in the data.

However, look what happens when the data from each
channel MBean on each server is gathered into a single table:

ChannelInfo Data – Multiple Channels

Channel Msgs
Sent

Msgs
Rcvd

Bytes
Queued

Max
Bytes Statistics

12 12549 9613 55040 2349128 Proc=124ms,
Wait=37ms

13 9456 8719 … …
14 4456 3398 … …
12 22315 17617 … …
13 9981 8871 … …

Note that the table contains a row of data from each
MBean on all servers. In this sample, the Channel ID field
contains the number 13 twice. This is because the channel 13
exists on more than one server.

The fact that the data does not identify the name of the
server from which it came is a big problem. The name of the
MBean contains the name of the server, but use of the
wildcard syntax to reference all MBeans does not
automatically provide information about the source. Without
information about the server, the table produced here is
useless. It seems like a simple oversight, yet this is probably
the most common problem encountered when visualization
and analysis is attempted on data exposed via JMX (and many
systems that pre-date JMX).

After seeing this situation come up time and again, some
products like Enterprise RTView have evolved to provide
automatic ways to supply this essential information to the
presentation and analysis layer. This is done by parsing keys
contained in the MBean name and creating new columns if
they don’t already exist. With the “Server” column added, the
table in our example above becomes:

Enhanced ChannelInfo Data – Multiple Channels

Server Chan Msgs
Sent

Msgs
Rcvd

Bytes
Que’d

Max
Bytes Stats

Server1 12 12549 9613 55040 … …
Server1 13 9456 8719 … …
Server1 14 4456 3398 … …
Server2 12 22315 17617 … …
Server2 13 9981 8871 … …

In the example above, the “Channel” column already
exists so it is not needed. The “Server” column is not available
but can be added from the name of the MBean sourcing the
data.

In general, the problem can be avoided by properly
identifying the source of the data in the original data table. In
many of these systems, there are dozens of columns of data.
Saving one or two columns is not very effective when you
consider what has to be done on the client side. There may be
a question as to whether it is good modeling practice to
include extra data in the MBean (it is duplicated in the name).
However, if the goal is to minimize development effort on the
client side, then the extra information is helpful. In an
Aggregator MBean, it would be essential.

 4

RECOMMENDATION: When using * to collect data
from multiple beans of the same type or multiple connections,
include columns as attributes that identify the source –
otherwise you cannot tell which bean it came from.

C. Calculating rates… it’s harder than it looks
Once the data is made available and properly identified,

the problem then becomes presentation. One common
requirement is to plot metrics like Msgs Sent and Rcvd in a
trend chart.

Obviously, raw Total Msgs data should not be plotted,
since it will be continually increasing. The delta from one
event to the next must be computed and used to plot the trend.

This problem is not unique to JMX – it is found in many
systems that gather data in real time. It is simple to count the
messages, export that raw data, and let the monitoring client
deal with the job of calculating deltas and rates.

However, at the client end it is not that simple,
particularly when data are gathered from multiple sources. The
sample tables below contain data at two instants in time for
just two channels, 12 and 13, on Server 1.

Time Instant 1

Server Channel Msgs Sent Msgs Rcvd …
Server1 12 12549 10317 …
Server1 13 9456 8755 …

Time Instant 2

Server Channel Msgs Sent Msgs Rcvd …

Server1 12 12936 10566 …
Server1 13 9467 8789 …

As long as the number of channels is the same at each

time instant, the problem is not so difficult. New values for
Channel 12 are compared with previous values for Channel 12
in order to calculate a delta. It is the same for Channel 13:

Calculated Deltas

Server Channel Msgs Sent Msgs Rcvd …

Server1 12 77 249 …
Server1 13 11 34 …

To accomplish this on the client side requires that one

must keep a “cache” of prior data as obtained in the previous
time interval. Additionally, each row of data must be cached
by one or more “index” columns that uniquely identify the
source. In this case, it is a combination of the Server and
Channel columns that identifies the rows to be compared.

This is not overly difficult, as there are simple algorithms
for constructing a “key” from the index columns and storing a
data row in a hashtable using that key. For each new row of
data, old data are extracted using the key, a delta is computed,
and the new data stored in place of the old.

However, it does put a burden on the developer of the
monitoring client to maintain a cache and to calculate deltas
against the incoming streams of data. Had the delta values
been computed and exposed within the MBean, no such effort
would be required.

In practice, it gets worse. Often, the number of sources
does not remain constant. Channels may be created
dynamically and the ID of each new channel is continually
changing, starting at 1 and incrementing each time. Old
channels may be closed and their IDs never reused.

In this situation, the cache that we maintain in order to
perform the delta calculation keeps growing:

A Delta Cache That Keeps Growing

Server Channel Msgs Sent Msgs Rcvd …

Server1 12 12936 10566 …
Server1 13 9467 8789 …
Server1 … … … …
Server1 3999 12341 7785 …

Here, channels 12 and 13 may be long gone, but the

previous values stored in the cache are still there. To avoid a
serious memory issue, the client code must provide a
mechanism by which the cache can be cleared of items that are
no longer needed. To do this requires that an event be
generated, indicating that a channel has been closed.

Of course, we may need a “channel closed” event for
other reasons, but to require it just so we can safely calculate
deltas seems excessively burdensome.

Because this problem is seen so often, advanced
visualization products usually provide built-in caching
capability and transformations that can be used to perform the
required work. However, when trying to apply a low-level
charting package to the problem, one quickly finds that the
problem is much bigger than originally thought.

The obvious recommendation here is to move the delta
calculation back to the MBean code. In most cases, a “count”
metric is going to be plotted, so provide the delta calculation
up-front. It is usually much easier to do this at the source.
There is no need for indexing of the data as the source
contains both the old and new data. There is no need to worry
about the coming and going of the objects (e.g. channels) as
the delta processing is self-contained within the object.

This is not to minimize the problems on the data-
collection side either. There are difficulties that arise when
moving the job back to the server. Specifically, the problem
now becomes how to manage the information so that it can be
accessed by multiple clients without having to keep track of
which client knows what.

The most common way to deal with this is to provide the
delta in terms of a “rate” rather than an absolute delta. This
way the time interval for the calculation can be maintained
independent of the client. The client can be supplied both the

 5

rate information and the original total information. In many
cases, it is the rate that users want to see anyway, as the
collection interval can vary and is really irrelevant.

RECOMMENDATION: Perform delta calculations
and/or rate computations on the server side rather than on the
client. It is much more efficient and easier on the client-side
developers.

D. Give me a break… part 1
Another problem often seen in data collection systems is

the inefficient encoding of information that is passed to the
client for presentation. A good example of this is the
“Statistics” column in our sample MBean:

String Encoded Data

Server Chan … Statistics …

Server1 12 … Proc=124ms,wait=34ms …
Server1 13 … Proc=1196ms,wait=98ms …

Often this is seen when the default view of the data is a

simple HTML page. Having the metrics already available in a
string form makes it easy to display in an HTML table without
having to do numeric formatting.

Sometimes, developers are inclined to use XML since it is
portable, easily parsed in client systems, and it is not binary:

<?xml version="1.0"?>
 <Statistics>
 <ProcessTime units=”ms”>124</ProcessTime>
 <WaitTime units=”ms”>34</WaitTime>
 </Statistics>

One argument for using either form is that the metrics
encoded in the string are to be accessed as a unit, so it is clear
that they represent a metric at the same instant in time.

However, most monitoring and visualization systems are
fully capable of dealing with structured numeric data. JMX
provides a simple OpenMBean data type called
CompositeData. Several related measurements can easily be
placed into a Composite structure using JMX API calls. The
data are transferred via JMX in an efficient binary form.

With XML or string encoding, the server must pack the
data into a String and the client has to unpack it at the other
end, knowing the schema for the data. Using CompositeData,
a client has information immediately available about the
semantics of the data. With Strings, it has none.

RECOMMENDATION: Use structured Composite and
Tabular data types wherever possible and avoid string
encoding that results in extra network overhead and more
development work on the client side.

E. Give me a break… part 2
A monitoring application is often required to “slice and

dice” data it has collected, typically in the form of charts and
graphs showing data “grouped by” various dimensions.

In our sample monitoring application the data that are
associated with two sources: the Channel, and the Server on
which that Channel is implemented. The same Channel may
exist on different Servers.

A user may want to see the total messages sent/received
across all Channels on a server (aggregation), or see how the
traffic for all channels is distributed across different Servers
(breakdown). Since the Server, Channel, and message counts
are all available in the same MBean, this is not a problem. A
Group By operation can be performed on the data, and the
appropriate chart used to present the results.

However, look at what happens when the user tries to
correlate the total message counts and the number of
connections on each channel, using our sample MBeans. In
order to perform a Group By operation relating Connections
and Total Messages, the data need to be in the same table. It is
necessary to perform a join operation on the two independent
tables before the data can be used for this purpose.

Upon review, it can be seen that there is a one-to-one
correspondence between the rows of data in the first table, the
Channel table, and the rows of the second table, the Network
table. Because the data structures inside the application were
maintained separately, the JMX MBean was designed to
expose the data in two different tables. It might have been
better to combine these two tables ahead of time in order to
minimize work that has to be done on the client side.

Joined Channel Data

Server Chan Msgs
Sent

Msgs
Rcvd … Stats Conns

Server1 12 12549 9613 … …
Server1 13 9456 8719 …

It is not suggested here that you build analytics into your

MBeans. Rather, collapse the data structures to their minimal
form before exposing the data. One would not say that the
answer to an algebra problem was 2x + 3x + 5 + 9. Instead, it
would be simplified by combining common terms and
providing 5x + 14 as the answer.

RECOMMENDATION: When there is a one-to-one
relationship between available metrics, combine these into a
single bean to avoid having to perform Joins and Combines on
the client side.

F. Have some foresight…
In the sample ChannelInfo MBean, memory metrics are

stored in a 32-bit integer, assuming the common Java
limitation of 1 GB heap space.

The integer representation works fine as long as you are
only looking at one bean at a time, as in the simple HTML
interface to the beans. However, when aggregating this metric
across multiple beans, we get the following:

 6

Totals for Max Bytes

Server Chan … Max Bytes …

Server1 12 … 536,870,912 …
Server1 13 … 536,870,912 …
Server1 14 … 536,870,912 …
Server2 11 … 536,870,912 …
Server2 13 … 536,870,912 …
Server2 14 … 536,870,912 …
… … … …
Total 3,221,225,472

The total for all the channels is a number that is well over

the largest positive integer – 2,147,483,648 – which can be
represented in 32 bits. The integer worked fine for one
channel, but not multiple channels. The data type should have
been long from the beginning, anticipating aggregation.

RECOMMENDATION: Look ahead to the results of
aggregations and use data types that are appropriate.
Aggregate totals can quickly grow very large.

G. Tracking History …
A common requirement for monitoring systems is to

maintain a historical record of activity. One solution is for an
MBean to write to a log file and record its own history.
However, in real world systems, where data volumes may be
huge, this is not practical. Storing the data into a relational
database provides the user many more options for reporting
than would simple log files.

Often overlooked is the need to include a timestamp with
the data. This is easy to do of course, but suffers from a major
problem. Activity on the network can delay acquisition of
metrics data. If a timestamp is assigned at the time data are
received in the client, any computation of rates or averages
that makes use of the delayed timestamp may be inaccurate.

RECOMMENDATION: Include a timestamp with all
data intended for archival or time-based analysis. It should be
stored at the time of data acquisition and be in millisecond
resolution in order to provide the most precise calculations.

H. To poll or not to poll…
Given the large amount of real time data that can be

produced in a monitoring system, one question often comes
up: can the notification capabilities of JMX be used to
minimize network traffic and overall load on the system?

Typically, a monitoring system is initially developed in a
polling mode. On a regular time interval, e.g. 10 seconds, a
request is made to query various metrics and the data are
transmitted back to a client system for analysis and display.
This polled approach can be costly in terms of network
bandwidth and processing overhead.

However, looking to notifications to solve this problem
may be somewhat fruitless. Notifications do not provide a
panacea for all that is wrong with a monitoring system. In fact,
if used incorrectly, there could be even more overhead
introduced.

The requirement to store historical data means that
metrics must be obtained on a regular basis, whether or not
anyone is looking at them. For example, the Total Message
counts and Bytes Used metrics are not candidates for
notifications. These must be polled in order to maintain a
consistent history of the values. There is nothing to be gained
by using notifications.

On the other hand, the Connections count may not be
changing every 10 seconds. A connection could remain alive
for hours or days. In this case, the use of notifications could
reduce the network traffic by only sending data about the
connection count when it changes.

A number of other issues should be considered when
using notifications. These are often overlooked, yet require
development support to properly use notifications:

1) The use of notifications must be combined with polling
and/or a caching mechanism. A notification is not issued until
data changes. When a display page is brought up, showing the
current count of connections, it will initially be blank and will
fill with data only as the Connections are added or removed.

The client application needs to populate a table or chart
with the current set of values either by polling for that data on
display activation, or by using a cache that maintains current
table values independent of the active displays. This
functionality requires that equivalent attributes be provided for
any values obtained via notifications.

2) When used in conjunction with historical data obtained
from an archival database, the use of notifications involves
similar complexity. A trend chart when first brought up must
be populated with data obtained from the archive. As
notifications are received, those values must be appended to
the chart. The archived data must be requested only once.

Building the mechanisms to support the merging of
notified data with current or historical data can involve a fair
amount of development effort, often minimized in the early
discussions about building a monitoring client against newly
minted JMX data.

RECOMMENDATION: Use notifications where data are
not changing regularly and there may be some real reduction
in overhead. Do not use notifications for everything just
because they are available. Design MBeans to support the
integration of notified data with current or historical data.

 7

IV. SCALABILITY AND MAINTENANCE
There are many more pitfalls that may occur with

monitoring using JMX. Most important of these are in
scalability and maintainability. Some systems simply produce
too many beans and this can result in terrible performance. In
others, the complexity of the MBean names and key properties
is overwhelming and can be a huge maintenance burden.

There needs to be the usual tradeoff made in balancing
complexity against performance. Many systems return one
row of data for each MBean, using the bean name to encode
the source. This can get unwieldy if overused, and the number
of beans can grow excessively. An alternative might be to
design beans that return multiple rows of data, e.g., instead of
an MBean for each channel, provide an MBean for the server
and return a table containing a row for each channel.

Other issues come into play when one looks at common
usage patterns of the MBeans in a system being monitored.
Are the data polled randomly or is there a predictable
sequence that can be used to pre-fetch data and have it
available on the next cycle?

For maintainability, it is important that data formats for
the beans remain stable and are not changed without some sort
of upward compatibility plan and/or deprecation plan.

For the most part, a combination of best practice
knowledge and good common sense can help produce a
quality monitoring system that performs well and has all
required functionality.

REFERENCES

[1] SUN – Java Management Extensions (JMX) - Best Practices, 2007
[2] Justin Murray, HP - Design Patterns for JMX and Application

Manageability, October 2004.
[3] BEA – WebLogic Server – Developing Custom Management Utilities

with Version 9.2, JMX, February 22, 2007.
[4] SUN - J2EE Management Specification JSR-77, Java Community

Process.
[5] Peltz, Kumar - Apply JMX Best Practices, Java Pro, December 2004.

