
Page 1 Copyright © 2009 Sherrill-Lubinski Corporation

Monitoring Oracle Coherence Using JMX:

Challenges and Limitations

Thomas Lubinski
SL Corporation

Corte Madera, CA
October 7, 2009

Abstract – Oracle Coherence is an in-memory distributed data
grid solution for applications and application servers. However,
as a powerful and complex distributed caching system, it must be
managed effectively in order ensure its uptime and performance
in critical applications. The product exposes extensive
performance metrics via a built-in JMX interface. This paper
discusses how to effectively leverage this information and some of
the practical considerations that have been encountered in using
these metrics in real-world monitoring situations. As part of this
discussion, a breakdown of the JMX MBean schema that is
provided by Coherence is reviewed, and recommendations are
made to minimize the latency of MBean queries, as well as the
overhead associated with collection across a large number of
MBeans. Finally, the paper offers suggestions for overcoming the
limitations of process nodes.

I. INTRODUCTION

Since its acquisition by Oracle in 2008, the Coherence
data grid solution has seen a steady increase in adoption. It is a
powerful, yet complex component of critical enterprise
software infrastructure that must be monitored and managed
effectively in order to ensure uptime and optimal performance.

Many large business applications – in industries as
diverse as financial services, risk management and on-line
stores – use Coherence services for storing and efficiently
accessing large volumes of data. A typical Coherence
application consists of as many as several hundred Coherence
instances or “nodes” (individual JVMs) distributing the
storage and access to multiple data caches over dozens of
hardware servers. This collection is referred to as a “cluster.”

A significant amount of highly useful monitoring and
management information is available in Coherence using a set
of built-in JMX MBeans running in every instance. An
application typically designates one or two Coherence
instances that are configured to act as a central aggregator of
the JMX information contained in all the other nodes. These
nodes produce large quantities of rapidly changing, real-time
monitoring data.

Many developers, especially first-time users, tend to
underestimate the difficulty of monitoring the large volumes
of data coming from a running Coherence installation, as well

as the importance of monitoring in the first place. Oracle
provides some support for managing and monitoring a cluster
using its Oracle Enterprise Manager Coherence plug-in. While
helpful, the OEM module provides only a part of the solution
necessary to optimally monitor the applications that use
Coherence.

To fill the gap, developers sometimes undertake an in-
house effort to collect the JMX MBean data themselves, and
assemble views using available low-level development tools.
However, the complexity of the MBeans often quickly
overwhelms such efforts.

SL Corporation has over 25 years of experience with
monitoring and visualization applications, with particular
expertise in Java. The company’s RTView product has been
uniquely architected to deal with real-time data produced in
many different types of monitoring applications, and has
features to address the most common requirements seen in
these systems. Along this same vein, RTView Oracle
Coherence Monitor is especially designed to deal with the
complexity and volumes of real-time data seen in systems
built around Coherence.

This paper presents some of the basic concepts involved
in monitoring Oracle Coherence using JMX, with emphasis on
the practical and effective use of the JMX information
gathered. It also discusses limitations to what Coherence
provides, additional requirements common to most
applications, and provides suggestions for configuration
options that can augment the monitoring capabilities.

While a tremendous amount of monitoring data is
available, the challenge is in presenting it in a useful and
effective manner. The goal of monitoring should be an
enhanced ability to understand what is happening within the
cluster and identify sources of trouble.

II. UNDERSTANDING COHERENCE JMX MBEANS

Due to its distributed nature, a Coherence cluster provides
numerous individual “test points,” or locations in the system
where monitoring data may be collected. A cluster containing
100 nodes and supporting 20 caches on each node will have at
least 20 x 100, or 2,000 individual collection points, one for

Page 2 Copyright © 2009 Sherrill-Lubinski Corporation

each cache on each node. The data set from each test point is
presented by Coherence as a JMX MBean.

Oracle provides a very useful mechanism to see the result
of data collected in these MBeans. The JMX Reporter was
introduced in version 3.4 of Coherence, providing out-of-the
box reports that help developers and administrators manage
capacity and troubleshoot problems. The reports can be
extremely valuable for some purposes, but are not real time.
Real-time monitoring and alerting requires that all MBean data
are captured on a regular basis, aggregated and presented
dynamically for immediate viewing or automated analysis. To
implement such a system requires an in-depth understanding
of the Coherence MBean schema.

There are six primary MBean types that provide most of
the monitoring data in a Coherence application. Some of these
may be instanced hundreds or even thousands of times.
Several other types provide important information, but are
instanced fewer times. The complex relationships between the
MBeans can make it confusing to understand the MBean
schema without some explanation.

A. Coherence Cluster

The figure below shows a high-level node-oriented view
of a typical cluster. Conceptually, nodes are divided into
“storage” nodes which store the data in caches, and “process”
(or “client”) nodes which access the stored data. Additionally
there may be a number of “proxy” nodes which provide a
pass-through capability so that other processes may “join” the
cluster indirectly and act as process nodes.

Figure 1 – Cluster View of Storage / Process / Proxy Nodes

There is a single Cluster MBean that contains information
about the cluster as a whole. Each node contained in the
cluster above exposes an additional Node MBean containing
statistics about that node such as maximum and current
memory usage, along with network packet transfer
information. However, there is nothing contained in the
MBean that indicates what type of node it is. That information
is carried in other MBeans.

In order to perform functions within a cluster, a node may
run several types of services, essentially threads within the

node process. The most important of these is the
DistributedCache service which can be configured in different
“types” having specific operational characteristics. A node that
runs a DistributedCache service can access data in any one of
multiple data caches that may be defined on that service.

B. Storage Nodes

The diagram below shows the additional MBeans that are
associated with storage nodes running such services. In this
example, StorageNode 1 is running two service types – A and
B – each containing two caches.

Figure 2 – MBeans Associated With a Storage Node

For each storage node, there is one Service MBean
created for each service, A and B, providing data about the
CPU load, request count, and so on for the service. There are
also two MBeans that provide data about how that node
handles each unique cache. The Cache MBeans provide
information about total gets, hits, misses, size, limits, etc. for
the cache, while the Storage MBeans provide detail about
insertions, deletions and evictions for that cache.

In order to provide a complete picture of how a cache is
performing, data contained in these MBeans must be collected
from all the storage nodes in the cluster and then merged and
aggregated. Multiple views can be produced that present
current and historical data grouped by node, by service or by
cache.

C. Process Nodes

Process nodes, on the other hand, make available far less
monitoring data about the caches they access. The only
MBean associated with the caches on a process node is the
Service MBean running on the node for each service.
Currently, there are no data available through Coherence JMX
regarding the hits, misses, puts, etc. that are executed on a
process node. Ways to overcome this limitation are discussed
in a section below.

An exception to this is the case of a “near” cache, a
special type of cache that provides a local “front” tier (or
buffer) on the process node itself for quick access to
frequently requested data contained in the “back” tier (the
storage node). In this case, there is one Cache MBean

Page 3 Copyright © 2009 Sherrill-Lubinski Corporation

containing information about accesses to the front local cache
running on that node (since the front cache is not distributed,
there is no Storage MBean).

Figure 3 – MBeans Associated With a Process Node

Proxy nodes are typically configured to run one or more
proxy service(s), for which the ProxyService MBean provides
information about total throughput, CPU load, etc. For each
external process that connects to the cluster via the proxy,
there is a Connection MBean that provides detail about the
number of bytes transferred through that proxy during any
given time interval, along with the total bytes transferred and
other metrics.

Figure 4 – MBeans Associated With a Proxy Node

Besides the MBeans discussed so far, there are several
other monitoring MBeans available, including the
PointToPoint MBeans and Connection Manager MBeans.
These will not be discussed here.

D. Management Nodes

In a Coherence Cluster, one or two special nodes may be
configured to perform a “management” function, using
environment variables in the startup command. In this case,
the node runs no cache services and provides no storage
capabilities. It acts strictly as an aggregator of the JMX
information that it collects from all the nodes in the cluster. A
monitoring application connects to this management node
using a JMX port, RMI, or directly using a local MBean
connection. The techniques for doing this are well documented
in the Coherence knowledge base.

As of version 3.4, Coherence has been able to act as an
MBean aggregator for arbitrary MBeans in addition to its own
MBeans. In practice, this feature has been used to collect the
standard JVM MBeans from each node in the cluster,
augmenting the Coherence statistics with information about
heap memory details, including garbage collection pause times
and post-GC memory consumption (very important to
detecting problems in a cluster). There are over 30 standard

JVM MBeans; the challenge is that collecting these from
every node greatly increases the number of MBeans that must
be processed.

In a cluster containing large numbers of nodes (>100) and
many caches (>20), the number of MBeans can go into the
tens of thousands. As a practical matter, the total number of
MBeans collected can be a source of overhead and latency
when monitoring larger clusters.

III. MINIMIZING MBEAN QUERY LATENCY

There are a number of techniques available for
minimizing the overhead associated with querying MBeans. It
is important to understand the source of the overhead, and to
measure it effectively so optimizations can be performed. The
first step is to determine a formula for calculating the total
number of MBeans requiring monitoring in a cluster.

Using the schema described in the previous section, it is
possible to construct a simple table showing elements of a
formula for calculating the total MBean count. As an example,
take a typical cluster containing 100 storage nodes “SN,” 50
process nodes “PN,” and 15 “near” caches “C” each on 2
services “S,” evenly distributed across all storage nodes
(ignoring proxy nodes for now):

Table 1 – Calculating MBean Count – Example

Component Formula Sample Total

Node beans SN + PN 100 + 50 150

Service beans S * (SN + PN) 2 * (100 + 50) 300

Cache beans
(back) 2 * C * S * SN 2 * 15 * 2 * 100 6,000

Cache beans
(front) C * S * PN 15 * 2 * 50 1,500

Storage Beans C * S * SN 15 * 2 * 100 3,000

JVM beans 3 * (SN + PN) 3 * (100 + 50) 450

The total count in this (medium) example is about 12,000
MBeans. Installations have been encountered with even larger
counts. Collecting such a large amount of data using JMX is
clearly a source of concern in a large cluster.

One option is to avoid querying all of the MBeans at the
same time, or to query them only on demand. However, it is a
common requirement to collect all monitoring data on a
regular interval and archive the data to a database. Doing this,
current values can be compared against historical, or capacity
planning can be implemented. To get a complete picture of the
size, activity, and performance levels of the cluster, all of the
MBeans must be queried so they can be aggregated and stored;
querying on demand is limited in its usefulness.

Another option is to poll them all, but only do it once
every 5 minutes or so to minimize load on the system. But,

Page 4 Copyright © 2009 Sherrill-Lubinski Corporation

when a cluster encounters a problem, there is often a cascade
effect that may take a matter of seconds. To get a good
understanding of what has happened in a failure case, it is
important to have granular metrics. Thus, it is necessary to
query the metrics data as often as possible without overloading
the system.

A third solution used in some cases is to query only a
subset of some types of MBean. For example, by querying
only the Node and Service MBeans, some information may be
obtained about the cluster. This approach, of course, leaves out
key information and thus is only a partial solution.

In Coherence versions 3.3 and earlier, collecting a large
number of MBeans in a large cluster was problematic and
limited the usefulness of the JMX monitoring data. The
MBean management node collects MBeans one at a time. In
the standard Java JMX implementation, an MBean query waits
to return until the data are obtained, and uses CPU cycles
while waiting. Querying 12,000 MBeans, the wait time on an
average Linux box could be as much as 60 or 120 seconds.
The only solution was to query at a slower rate, e.g. 90 or 150
seconds to give the CPU some idle time.

In version 3.4, Oracle introduced a clever mechanism
controlled by a new property called the “refresh policy” and a
value “refresh expiry time.” This is a method by which the
Coherence node acting as the MBean aggregator can make
assumptions about the access pattern for the MBean data. If
there is a regular access pattern, the system can be placed in a
“refresh-ahead” mode. In this mode, MBeans from all nodes
are collected prior to the next expected query using a fast
internal protocol. The next time the query is made, the
MBeans are available and can be returned with little delay. In
the example discussed here, the query time can be reduced to
just a few seconds by using the appropriate setting for the
refresh expiry time and adjusting the MBean query interval.

Additionally, 3.4 introduced a refresh timeout for JMX
queries that prevents a node, which is experiencing a long
delay due to garbage collection or other CPU-intensive
activity, from holding up the query. This helps to make the
query times more predictable.

Tuning the policy and setting the proper expiration period
is not trivial. In the RTView Oracle Coherence Monitor, tools
are provided to aid in this tuning. Typically, queries must be
done slowly at first until the management node “learns” the
access pattern, at which point the access interval can be
shortened. Once tuned, MBeans access can be very quick,
providing a high level of granularity in the monitoring metrics.

IV. REDUCING TOTAL MBEAN COUNTS

Even with the refresh-ahead optimization, there is reason
to give attention to the overhead associated with collecting
such a large number of MBeans. While the elapsed time is
shorter, permitting one to collect data at a higher rate, large
amounts of data are transferred from every node to the
aggregator node from all other nodes. This network overhead

is not large compared with other forms of Coherence overhead
such as deserialization and cluster repartitioning, but it is
nonetheless an area to consider for additional optimization.

Coherence developers are familiar with using custom
cache configurations to control the behavior of services and
caches in the cluster. For example, configuring the High Units
setting on a specific service type can limit the amount of
memory used by the caches on that service in order to prevent
OutOfMemory JVM errors if too many objects are inserted
into a cache.

Interestingly, the configuration of caches and services
across cluster nodes can also affect quite dramatically the
number of monitoring MBeans that are created when the
cluster runs. This is one place to look for ways to reduce the
total MBean count and minimize overhead associated with
monitoring.

A. Use “Near” Caches Carefully

In the example above, “near” caches were defined on both
services and on all nodes. This was done deliberately to
highlight the way in which monitoring MBeans are created for
this type of cache. Near caches are useful for creating a
“double-buffered” cache with better performance, but they do
introduce additional monitoring overhead.

In Table 1 above, note that the formula for the “back”
caches is 2 * C * S * SN. The “2” in the formula is necessary
because, for a “near” cache, there are two Cache MBeans
created for every cache, representing two tiers, “front” and
“back.” However, on the storage nodes, only the back MBean
carries important information, even though a front MBean is
created. Additionally, every process node creates a front
Cache MBean for its local cache.

It would be better to define near caches only when they
are specifically required, for performance reasons. For
example, if only 4 near caches were defined instead of 30, the
Cache MBean count for the back tier would be reduced to
3,400 and the front tier to 200. The result is a combined 3,600
MBeans rather than the 7,500 seen initially.

Often, users create a cache configuration file and, for
simplicity in deployment, apply it to all the nodes identically.
Then all caches and services are run the same way on all
nodes. This simple example illustrates the significant cost
associated with ignoring the impact of this on MBean counts.

B. Control Service Configuration Across Nodes

One technique sometimes used to provide control over
cache capacity and memory utilization in large clusters is
referred to as “heterogeneous scaling.” Rather than running
every Cache Service on every node in the cluster, services are
started on-demand in order to supply additional capacity when
required by an application with dynamically changing storage
requirements.

This technique has an additional benefit that can be used
effectively when monitoring large clusters with many caches.

Page 5 Copyright © 2009 Sherrill-Lubinski Corporation

A service that supports many small caches can be started on
only a subset of the available nodes, significantly reducing the
number of Cache and Storage MBeans that are created.

In the table showing the total MBean count for our sample
cluster, the Cache MBeans make up the largest percentage of
the total. This count is the product of the storage nodes,
services and caches running on those nodes. Reducing any one
of these multipliers dramatically reduces the total.

For example, if Service B in the example supported
caches that were relatively small (object count and memory
size) and were not “near” caches, it might be started on only
10 storage nodes instead of 100. The total count for the Cache
MBeans would be modified as shown here:

Table 2 - Calculating Cache MBean Count - Second Example

Component Formula Sample Total

Cache beans
(service 1) C1 * SN1 15 * 100 1500

Cache beans
(service 2) C2 * SN2 15 * 10 150

Now the 7,500 Cache MBeans seen at the start has been
trimmed to 1,650, a reduction of over 75%, simply by
supporting the second set of caches on a smaller number of
nodes and limiting near caches. As long as the number of
nodes supporting the cache is adequate to provide data backup
and a safe cluster, this technique can be used effectively for
reducing overhead in a large cluster. In our example, the
number of caches is only 30, but in some installations there
may be hundreds of caches and the effect is greatly magnified.

There is a tradeoff in the use of this technique as it
increases the complexity of the cluster configuration.
However, the value in terms of capacity management and
reduction in monitoring load is often worth the extra effort.

V. OVERCOMING LIMITATIONS OF PROCESS NODES

The MBeans associated with the storage nodes provide
the bulk of the metrics available for monitoring in Coherence.
In practice, the behavior of the process nodes is equally, if not
more, important. An application may be performing poorly,
yet the storage nodes all seem to be running fine. In this case,
the problem may be in the process nodes, but there is not
much information available to help determine the cause. Only
one MBean is available on a process node, the Service MBean.

There are, however, several techniques that may be used
to help isolate the cause. Three of these are described below.

A. Define Unique Service for Important Caches

The first requires a custom service configuration in which
one or more important caches are assigned uniquely to their
own services. In other words, define multiple services in such
a way that only a single cache is run on each. In this

configuration, the data contained in the Service MBean is
known to be specific to the single cache running on that
service. When multiple caches are running on a service, there
is no way to know which cache is causing a problem.

The Service MBean contains a lot of useful information,
such as CPU utilization for that thread, a count of messages
executed on the service (a measure of activity, usually
equating to gets or puts), and information about task backlog
and available threads. Using this technique, a great deal of
information can be determined about the behavior of a single
cache being accessed by each specific process node.

The caveat is that there is overhead associated with
running multiple services on a node. While it is common to
run several different services on nodes, it is not clear what the
effect would be of having 30 or more separate services
supporting a single cache on each. Clearly, it would be wise to
limit the use of this technique to the more important and
heavily used caches in an application.

B. Make Use of Proxy Nodes

In a Coherence cluster, proxy nodes may be utilized as a
way to decouple the processing applications from the cluster
itself. A proxy node does no processing itself, but rather acts
as a gateway to external applications that communicate with it
over a traditional TCP socket. This provides a measure of
security in that the external processing applications cannot
directly use the Coherence API and exact damage to the
cluster.

Proxy nodes offer an additional, almost unintentional,
benefit when it comes to monitoring behavior in a cluster.
Standard process nodes provide no information about their
interaction with the cluster other than the service information
described above. A proxy node exists between the cluster and
the external process nodes, and as a result can provide useful
information about data transfers to and from the cluster.

A proxy node exposes metrics about the quantity and rate
of data transfer, as well as CPU utilization for all activities
passed through it. Additionally, there is another MBean
exposed for every client process that connects to the proxy
node, providing yet more information about activity going
through the node.

In versions 3.3 and earlier, proxy nodes suffered from a
number of performance issues. As of version 3.4, these issues
have been addressed and it is possible now to take advantage
of proxy nodes as another way of collecting statistics about
cluster processing.

For example, multiple proxy nodes could be created, one
for each important cache. All access to these caches could be
directed through the proxy in order to gather metrics about the
data transfer rates and quantities. Again, this is not something
that should be overdone. It is simply one more tool available
for gathering information about cluster behavior.

Page 6 Copyright © 2009 Sherrill-Lubinski Corporation

C. Instrument Client Applications With JMX MBeans

Last, but probably most important, is a recommendation
to take time to instrument the processing applications with
JMX MBeans (or some other methodology). There is no better
way to obtain performance data than to collect it at the site
where is it used and make it available in real-time to a
monitoring application like RTView.

One of the most commonly requested metrics is
information about the time it takes for a process node to get
data from a cache or to put data into it. There are (currently)
no MBeans available in the Coherence nodes that will provide
this information. It is possible to get information about how
long the storage nodes took to perform these operations, but
one cannot tell from this which process nodes were affected.
Often there are other factors influencing the performance of
specific process nodes.

By measuring the time it takes to perform critical
operations in the application and exposing this information via
JMX MBeans, displays can be created to correlate observed
behavior in each process node with metrics available from
Coherence. The result can be a highly effective monitoring
system that can be used to head off problems before they
occur, as well as troubleshoot when something does go wrong.

VI. OTHER CONSIDERATIONS

There are some very basic configuration options provided
by Coherence that are important to keep in mind in order to
provide an effective monitoring solution.

For example, associating a unique “member” name with
each node in the cluster is crucial to being able to track
activity on specific nodes across a node or cluster restart.
When nodes are created, they are assigned a unique “ID,” but
this ID can change from run to run and cannot be used to track
activity on the node. The command line option
“–tangosol.coherence.member=NNN” can be used to assign
a unique name that is retained across invocations so a node’s
activity can be stored in a database, for example, and analyzed
over time. Additionally, assigning a machine ID in a similar
way can be helpful in clarifying cluster topology.

Several other topics are deserving of complete treatment
in papers of their own, and will be discussed only briefly here.

Understanding memory utilization in Coherence clusters
is complicated. The number one culprit is JVM memory heap
utilization and garbage collection. Memory usage reported by
Coherence does not account for garbage in memory and
cannot be relied upon to understand true memory
consumption. This data must be correlated with JVM metrics
on garbage collection in order to get a complete picture of
current memory usage, the trend of which can be an important
trigger for possible cluster failures.

Additionally, it is often important to understand how
memory is allocated and consumed in each cache on each
service on each node. This is complicated by the fact that users

must configure cache services to report memory in bytes
instead of objects; front caches report usage only in terms of
objects and thus the memory usage can only be estimated by
multiplying number of objects by average object size
(obtained from back caches).

A further complication is that Coherence only reports the
amount of memory consumed by primary data. One has to
calculate the memory consumed by back storage by
accounting for the configured backup count parameter. Index
data for caches is another problem. There is currently no way
to determine precisely the amount of memory consumed by
index data associated with a particular cache, and these data
can be as large as the data stored in the cache.

Coherence also provides no information about where
specific data are located (on which node or partition). A
commonly seen issue is related to “hot keys” or specific
objects that are accessed heavily. It is not easy to see what
these are and to troubleshoot the effects on the cluster of
access patterns that are not balanced.

Each of these areas deserves further study so that adequate
solutions can be developed to assist Coherence users in the
future.

VII. SUMMARY

Oracle Coherence is a superb piece of technology that
implements distributed caching. There are numerous mission-
critical applications that simply would not be possible or could
not perform adequately without the underlying Coherence
cache infrastructure. However, there are significant challenges
to monitoring Coherence effectively to ensure uptime and
performance.

This paper has attempted to demystify the complex JMX
MBean schema that is provided by Coherence, highlighting
ways that the data produced can be used effectively in a
monitoring application.

Additionally, some of the limitations inherent in present
versions of the Coherence JMX MBeans were discussed.
While there is a lot of information about storage behavior,
there is not as much about process behavior. This paper
suggested several techniques that can be used to help identify
and isolate causes of trouble in the cluster.

REFERENCES
[1] Oracle - Coherence Knowledge Base, Coherence 3.4 User Guide 2009,

http://coherence.oracle.com/display/COH34UG/How+to+Manage+Cohe
rence+Using+JMX

[2] Oracle - Coherence Planning: From Proof of Concept to Production, An
Oracle White Paper, November 2008

[3] Oracle - Coherence 3.4 Documentation, Interface Registery Javadocs,
http://download.oracle.com/otn_hosted_doc/coherence/340/com/tangoso
l/net/management/Registry.html

[4] Lubinski, Thomas – Practical Considerations When Instrumenting
Applications with JMX, Information Week, July 2008

[5] Lubinski, Thomas – Business Activity Monitoring: Process Control for
the Enterprise, www.sl.com, SL Corporation, 2008

