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Abstract – Oracle Coherence is an in-memory distributed data 
grid solution for applications and application servers. However, 
as a powerful and complex distributed caching system, it must be 
managed effectively in order ensure its uptime and performance 
in critical applications. The product exposes extensive 
performance metrics via a built-in JMX interface. This paper 
discusses how to effectively leverage this information and some of 
the practical considerations that have been encountered in using 
these metrics in real-world monitoring situations. As part of this 
discussion, a breakdown of the JMX MBean schema that is 
provided by Coherence is reviewed, and recommendations are 
made to minimize the latency of MBean queries, as well as the 
overhead associated with collection across a large number of 
MBeans. Finally, the paper offers suggestions for overcoming the 
limitations of process nodes. 

I. INTRODUCTION 

Since its acquisition by Oracle in 2008, the Coherence 
data grid solution has seen a steady increase in adoption. It is a 
powerful, yet complex component of critical enterprise 
software infrastructure that must be monitored and managed 
effectively in order to ensure uptime and optimal performance. 

Many large business applications – in industries as 
diverse as financial services, risk management and on-line 
stores – use Coherence services for storing and efficiently 
accessing large volumes of data. A typical Coherence 
application consists of as many as several hundred Coherence 
instances or “nodes” (individual JVMs) distributing the 
storage and access to multiple data caches over dozens of 
hardware servers. This collection is referred to as a “cluster.” 

A significant amount of highly useful monitoring and 
management information is available in Coherence using a set 
of built-in JMX MBeans running in every instance. An 
application typically designates one or two Coherence 
instances that are configured to act as a central aggregator of 
the JMX information contained in all the other nodes. These 
nodes produce large quantities of rapidly changing, real-time 
monitoring data. 

Many developers, especially first-time users, tend to 
underestimate the difficulty of monitoring the large volumes 
of data coming from a running Coherence installation, as well 

as the importance of monitoring in the first place. Oracle 
provides some support for managing and monitoring a cluster 
using its Oracle Enterprise Manager Coherence plug-in. While 
helpful, the OEM module provides only a part of the solution 
necessary to optimally monitor the applications that use 
Coherence. 

To fill the gap, developers sometimes undertake an in-
house effort to collect the JMX MBean data themselves, and 
assemble views using available low-level development tools. 
However, the complexity of the MBeans often quickly 
overwhelms such efforts.   

SL Corporation has over 25 years of experience with 
monitoring and visualization applications, with particular 
expertise in Java. The company’s RTView product has been  
uniquely architected to deal with real-time data produced in 
many different types of monitoring applications, and has 
features to address the most common requirements seen in 
these systems. Along this same vein, RTView Oracle 
Coherence Monitor is especially designed to deal with the 
complexity and volumes of real-time data seen in systems 
built around Coherence. 

This paper presents some of the basic concepts involved 
in monitoring Oracle Coherence using JMX, with emphasis on 
the practical and effective use of the JMX information 
gathered. It also discusses limitations to what Coherence 
provides, additional requirements common to most 
applications, and provides suggestions for configuration 
options that can augment the monitoring capabilities. 

While a tremendous amount of monitoring data is 
available, the challenge is in presenting it in a useful and 
effective manner. The goal of monitoring should be an 
enhanced ability to understand what is happening within the 
cluster and identify sources of trouble. 

II. UNDERSTANDING COHERENCE JMX MBEANS 

Due to its distributed nature, a Coherence cluster provides 
numerous individual “test points,” or locations in the system 
where monitoring data may be collected. A cluster containing 
100 nodes and supporting 20 caches on each node will have at 
least 20 x 100, or 2,000 individual collection points, one for 
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each cache on each node. The data set from each test point is 
presented by Coherence as a JMX MBean. 

Oracle provides a very useful mechanism to see the result 
of data collected in these MBeans. The JMX Reporter was 
introduced in version 3.4 of Coherence, providing out-of-the 
box reports that help developers and administrators manage 
capacity and troubleshoot problems. The reports can be 
extremely valuable for some purposes, but are not real time. 
Real-time monitoring and alerting requires that all MBean data 
are captured on a regular basis, aggregated and presented 
dynamically for immediate viewing or automated analysis. To 
implement such a system requires an in-depth understanding 
of the Coherence MBean schema. 

There are six primary MBean types that provide most of 
the monitoring data in a Coherence application. Some of these 
may be instanced hundreds or even thousands of times. 
Several other types provide important information, but are 
instanced fewer times. The complex relationships between the 
MBeans can make it confusing to understand the MBean 
schema without some explanation. 

A. Coherence Cluster 

The figure below shows a high-level node-oriented view 
of a typical cluster. Conceptually, nodes are divided into 
“storage” nodes which store the data in caches, and “process” 
(or “client”) nodes which access the stored data. Additionally 
there may be a number of “proxy” nodes which provide a 
pass-through capability so that other processes may “join” the 
cluster indirectly and act as process nodes. 

 
Figure 1 – Cluster View of Storage / Process / Proxy Nodes 

There is a single Cluster MBean that contains information 
about the cluster as a whole. Each node contained in the 
cluster above exposes an additional Node MBean containing 
statistics about that node such as maximum and current 
memory usage, along with network packet transfer 
information. However, there is nothing contained in the 
MBean that indicates what type of node it is. That information 
is carried in other MBeans. 

In order to perform functions within a cluster, a node may 
run several types of services, essentially threads within the 

node process. The most important of these is the 
DistributedCache service which can be configured in different 
“types” having specific operational characteristics. A node that 
runs a DistributedCache service can access data in any one of 
multiple data caches that may be defined on that service.  

B. Storage Nodes 

The diagram below shows the additional MBeans that are 
associated with storage nodes running such services. In this 
example, StorageNode 1 is running two service types – A and 
B – each containing two caches. 

 
Figure 2 – MBeans Associated With a Storage Node 

For each storage node, there is one Service MBean 
created for each service, A and B, providing data about the 
CPU load, request count, and so on for the service. There are 
also two MBeans that provide data about how that node 
handles each unique cache. The Cache MBeans provide 
information about total gets, hits, misses, size, limits, etc. for 
the cache, while the Storage MBeans provide detail about 
insertions, deletions and evictions for that cache. 

In order to provide a complete picture of how a cache is 
performing, data contained in these MBeans must be collected 
from all the storage nodes in the cluster and then merged and 
aggregated. Multiple views can be produced that present 
current and historical data grouped by node, by service or by 
cache. 

C. Process Nodes 

Process nodes, on the other hand, make available far less 
monitoring data about the caches they access. The only 
MBean associated with the caches on a process node is the 
Service MBean running on the node for each service. 
Currently, there are no data available through Coherence JMX 
regarding the hits, misses, puts, etc. that are executed on a 
process node. Ways to overcome this limitation are discussed 
in a section below. 

An exception to this is the case of a “near” cache, a 
special type of cache that provides a local “front” tier (or 
buffer) on the process node itself for quick access to 
frequently requested data contained in the “back” tier (the 
storage node). In this case, there is one Cache MBean 
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containing information about accesses to the front local cache 
running on that node (since the front cache is not distributed, 
there is no Storage MBean). 

 
Figure 3 – MBeans Associated With a Process Node 

Proxy nodes are typically configured to run one or more 
proxy service(s), for which the ProxyService MBean provides 
information about total throughput, CPU load, etc. For each 
external process that connects to the cluster via the proxy, 
there is a Connection MBean that provides detail about the 
number of bytes transferred through that proxy during any 
given time interval, along with the total bytes transferred and 
other metrics. 

 
Figure 4 – MBeans Associated With a Proxy Node 

Besides the MBeans discussed so far, there are several 
other monitoring MBeans available, including the 
PointToPoint MBeans and Connection Manager MBeans. 
These will not be discussed here. 

D. Management Nodes 

In a Coherence Cluster, one or two special nodes may be 
configured to perform a “management” function, using 
environment variables in the startup command. In this case, 
the node runs no cache services and provides no storage 
capabilities. It acts strictly as an aggregator of the JMX 
information that it collects from all the nodes in the cluster. A 
monitoring application connects to this management node 
using a JMX port, RMI, or directly using a local MBean 
connection. The techniques for doing this are well documented 
in the Coherence knowledge base. 

As of version 3.4, Coherence has been able to act as an 
MBean aggregator for arbitrary MBeans in addition to its own 
MBeans. In practice, this feature has been used to collect the 
standard JVM MBeans from each node in the cluster, 
augmenting the Coherence statistics with information about 
heap memory details, including garbage collection pause times 
and post-GC memory consumption (very important to 
detecting problems in a cluster). There are over 30 standard 

JVM MBeans; the challenge is that collecting these from 
every node greatly increases the number of MBeans that must 
be processed. 

In a cluster containing large numbers of nodes (>100) and 
many caches (>20), the number of MBeans can go into the 
tens of thousands. As a practical matter, the total number of 
MBeans collected can be a source of overhead and latency 
when monitoring larger clusters. 

III. MINIMIZING MBEAN QUERY LATENCY 

There are a number of techniques available for 
minimizing the overhead associated with querying MBeans. It 
is important to understand the source of the overhead, and to 
measure it effectively so optimizations can be performed. The 
first step is to determine a formula for calculating the total 
number of MBeans requiring monitoring in a cluster. 

Using the schema described in the previous section, it is 
possible to construct a simple table showing elements of a 
formula for calculating the total MBean count. As an example, 
take a typical cluster containing 100 storage nodes “SN,” 50 
process nodes “PN,” and 15 “near” caches “C” each on 2 
services “S,” evenly distributed across all storage nodes 
(ignoring proxy nodes for now): 

Table 1 – Calculating MBean Count – Example 

Component Formula Sample Total 

Node beans SN + PN 100 + 50 150 

Service beans S * (SN + PN) 2 * (100 + 50) 300 

Cache beans 
(back) 2 * C * S * SN  2 * 15 * 2 * 100 6,000 

Cache beans 
(front) C * S * PN 15 * 2 * 50 1,500 

Storage Beans C * S * SN 15 * 2 * 100 3,000 

JVM beans  3 * (SN + PN) 3 * (100 + 50) 450 

 

The total count in this (medium) example is about 12,000 
MBeans. Installations have been encountered with even larger 
counts. Collecting such a large amount of data using JMX is 
clearly a source of concern in a large cluster. 

One option is to avoid querying all of the MBeans at the 
same time, or to query them only on demand. However, it is a 
common requirement to collect all monitoring data on a 
regular interval and archive the data to a database. Doing this, 
current values can be compared against historical, or capacity 
planning can be implemented. To get a complete picture of the 
size, activity, and performance levels of the cluster, all of the 
MBeans must be queried so they can be aggregated and stored; 
querying on demand is limited in its usefulness. 

Another option is to poll them all, but only do it once 
every 5 minutes or so to minimize load on the system. But, 
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when a cluster encounters a problem, there is often a cascade 
effect that may take a matter of seconds. To get a good 
understanding of what has happened in a failure case, it is 
important to have granular metrics. Thus, it is necessary to 
query the metrics data as often as possible without overloading 
the system. 

A third solution used in some cases is to query only a 
subset of some types of MBean. For example, by querying 
only the Node and Service MBeans, some information may be 
obtained about the cluster. This approach, of course, leaves out 
key information and thus is only a partial solution. 

In Coherence versions 3.3 and earlier, collecting a large 
number of MBeans in a large cluster was problematic and 
limited the usefulness of the JMX monitoring data. The 
MBean management node collects MBeans one at a time. In 
the standard Java JMX implementation, an MBean query waits 
to return until the data are obtained, and uses CPU cycles 
while waiting. Querying 12,000 MBeans, the wait time on an 
average Linux box could be as much as 60 or 120 seconds. 
The only solution was to query at a slower rate, e.g. 90 or 150 
seconds to give the CPU some idle time. 

In version 3.4, Oracle introduced a clever mechanism 
controlled by a new property called the “refresh policy” and a 
value “refresh expiry time.” This is a method by which the 
Coherence node acting as the MBean aggregator can make 
assumptions about the access pattern for the MBean data. If 
there is a regular access pattern, the system can be placed in a 
“refresh-ahead” mode. In this mode, MBeans from all nodes 
are collected prior to the next expected query using a fast 
internal protocol. The next time the query is made, the 
MBeans are available and can be returned with little delay. In 
the example discussed here, the query time can be reduced to 
just a few seconds by using the appropriate setting for the 
refresh expiry time and adjusting the MBean query interval. 

Additionally, 3.4 introduced a refresh timeout for JMX 
queries that prevents a node, which is experiencing a long 
delay due to garbage collection or other CPU-intensive 
activity, from holding up the query. This helps to make the 
query times more predictable. 

Tuning the policy and setting the proper expiration period 
is not trivial. In the RTView Oracle Coherence Monitor, tools 
are provided to aid in this tuning. Typically, queries must be 
done slowly at first until the management node “learns” the 
access pattern, at which point the access interval can be 
shortened. Once tuned, MBeans access can be very quick, 
providing a high level of granularity in the monitoring metrics. 

IV. REDUCING TOTAL MBEAN  COUNTS 

Even with the refresh-ahead optimization, there is reason 
to give attention to the overhead associated with collecting 
such a large number of MBeans. While the elapsed time is 
shorter, permitting one to collect data at a higher rate, large 
amounts of data are transferred from every node to the 
aggregator node from all other nodes. This network overhead 

is not large compared with other forms of Coherence overhead 
such as deserialization and cluster repartitioning, but it is 
nonetheless an area to consider for additional optimization. 

Coherence developers are familiar with using custom 
cache configurations to control the behavior of services and 
caches in the cluster. For example, configuring the High Units 
setting on a specific service type can limit the amount of 
memory used by the caches on that service in order to prevent 
OutOfMemory JVM errors if too many objects are inserted 
into a cache. 

Interestingly, the configuration of caches and services 
across cluster nodes can also affect quite dramatically the 
number of monitoring MBeans that are created when the 
cluster runs. This is one place to look for ways to reduce the 
total MBean count and minimize overhead associated with 
monitoring. 

A. Use “Near” Caches Carefully 

In the example above, “near” caches were defined on both 
services and on all nodes. This was done deliberately to 
highlight the way in which monitoring MBeans are created for 
this type of cache. Near caches are useful for creating a 
“double-buffered” cache with better performance, but they do 
introduce additional monitoring overhead. 

In Table 1 above, note that the formula for the “back” 
caches is 2 * C * S * SN. The “2” in the formula is necessary 
because, for a “near” cache, there are two Cache MBeans 
created for every cache, representing two tiers, “front” and 
“back.” However, on the storage nodes, only the back MBean 
carries important information, even though a front MBean is 
created. Additionally, every process node creates a front 
Cache MBean for its local cache. 

It would be better to define near caches only when they 
are specifically required, for performance reasons. For 
example, if only 4 near caches were defined instead of 30, the 
Cache MBean count for the back tier would be reduced to 
3,400 and the front tier to 200. The result is a combined 3,600 
MBeans rather than the 7,500 seen initially. 

Often, users create a cache configuration file and, for 
simplicity in deployment, apply it to all the nodes identically. 
Then all caches and services are run the same way on all 
nodes. This simple example illustrates the significant cost 
associated with ignoring the impact of this on MBean counts.  

B. Control Service Configuration Across Nodes 

One technique sometimes used to provide control over 
cache capacity and memory utilization in large clusters is 
referred to as “heterogeneous scaling.” Rather than running 
every Cache Service on every node in the cluster, services are 
started on-demand in order to supply additional capacity when 
required by an application with dynamically changing storage 
requirements. 

This technique has an additional benefit that can be used 
effectively when monitoring large clusters with many caches. 
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A service that supports many small caches can be started on 
only a subset of the available nodes, significantly reducing the 
number of Cache and Storage MBeans that are created. 

In the table showing the total MBean count for our sample 
cluster, the Cache MBeans make up the largest percentage of 
the total. This count is the product of the storage nodes, 
services and caches running on those nodes. Reducing any one 
of these multipliers dramatically reduces the total. 

For example, if Service B in the example supported 
caches that were relatively small (object count and memory 
size) and were not “near” caches, it might be started on only 
10 storage nodes instead of 100. The total count for the Cache 
MBeans would be modified as shown here: 

Table 2 - Calculating Cache MBean Count - Second Example 

Component Formula Sample Total 

Cache beans 
(service 1) C1 * SN1 15 * 100 1500 

Cache beans 
(service 2) C2 * SN2 15 * 10 150 

 

Now the 7,500 Cache MBeans seen at the start has been 
trimmed to 1,650, a reduction of over 75%, simply by 
supporting the second set of caches on a smaller number of 
nodes and limiting near caches. As long as the number of 
nodes supporting the cache is adequate to provide data backup 
and a safe cluster, this technique can be used effectively for 
reducing overhead in a large cluster. In our example, the 
number of caches is only 30, but in some installations there 
may be hundreds of caches and the effect is greatly magnified. 

There is a tradeoff in the use of this technique as it 
increases the complexity of the cluster configuration. 
However, the value in terms of capacity management and 
reduction in monitoring load is often worth the extra effort. 

V. OVERCOMING LIMITATIONS OF PROCESS NODES 

The MBeans associated with the storage nodes provide 
the bulk of the metrics available for monitoring in Coherence. 
In practice, the behavior of the process nodes is equally, if not 
more, important. An application may be performing poorly, 
yet the storage nodes all seem to be running fine. In this case, 
the problem may be in the process nodes, but there is not 
much information available to help determine the cause. Only 
one MBean is available on a process node, the Service MBean. 

There are, however, several techniques that may be used 
to help isolate the cause. Three of these are described below.  

A. Define Unique Service for Important Caches 

The first requires a custom service configuration in which 
one or more important caches are assigned uniquely to their 
own services. In other words, define multiple services in such 
a way that only a single cache is run on each. In this 

configuration, the data contained in the Service MBean is 
known to be specific to the single cache running on that 
service.  When multiple caches are running on a service, there 
is no way to know which cache is causing a problem. 

The Service MBean contains a lot of useful information, 
such as CPU utilization for that thread, a count of messages 
executed on the service (a measure of activity, usually 
equating to gets or puts), and information about task backlog 
and available threads. Using this technique, a great deal of 
information can be determined about the behavior of a single 
cache being accessed by each specific process node. 

The caveat is that there is overhead associated with 
running multiple services on a node. While it is common to 
run several different services on nodes, it is not clear what the 
effect would be of having 30 or more separate services 
supporting a single cache on each. Clearly, it would be wise to 
limit the use of this technique to the more important and 
heavily used caches in an application. 

B. Make Use of Proxy Nodes 

In a Coherence cluster, proxy nodes may be utilized as a 
way to decouple the processing applications from the cluster 
itself. A proxy node does no processing itself, but rather acts 
as a gateway to external applications that communicate with it 
over a traditional TCP socket. This provides a measure of 
security in that the external processing applications cannot 
directly use the Coherence API and exact damage to the 
cluster.  

Proxy nodes offer an additional, almost unintentional, 
benefit when it comes to monitoring behavior in a cluster. 
Standard process nodes provide no information about their 
interaction with the cluster other than the service information 
described above. A proxy node exists between the cluster and 
the external process nodes, and as a result can provide useful 
information about data transfers to and from the cluster.  

A proxy node exposes metrics about the quantity and rate 
of data transfer, as well as CPU utilization for all activities 
passed through it. Additionally, there is another MBean 
exposed for every client process that connects to the proxy 
node, providing yet more information about activity going 
through the node. 

In versions 3.3 and earlier, proxy nodes suffered from a 
number of performance issues. As of version 3.4, these issues 
have been addressed and it is possible now to take advantage 
of proxy nodes as another way of collecting statistics about 
cluster processing. 

For example, multiple proxy nodes could be created, one 
for each important cache. All access to these caches could be 
directed through the proxy in order to gather metrics about the 
data transfer rates and quantities. Again, this is not something 
that should be overdone. It is simply one more tool available 
for gathering information about cluster behavior.  
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C. Instrument Client Applications With JMX MBeans 

Last, but probably most important, is a recommendation 
to take time to instrument the processing applications with 
JMX MBeans (or some other methodology). There is no better 
way to obtain performance data than to collect it at the site 
where is it used and make it available in real-time to a 
monitoring application like RTView. 

One of the most commonly requested metrics is 
information about the time it takes for a process node to get 
data from a cache or to put data into it. There are (currently) 
no MBeans available in the Coherence nodes that will provide 
this information. It is possible to get information about how 
long the storage nodes took to perform these operations, but 
one cannot tell from this which process nodes were affected. 
Often there are other factors influencing the performance of 
specific process nodes. 

By measuring the time it takes to perform critical 
operations in the application and exposing this information via 
JMX MBeans, displays can be created to correlate observed 
behavior in each process node with metrics available from 
Coherence. The result can be a highly effective monitoring 
system that can be used to head off problems before they 
occur, as well as troubleshoot when something does go wrong. 

VI. OTHER CONSIDERATIONS 

There are some very basic configuration options provided 
by Coherence that are important to keep in mind in order to 
provide an effective monitoring solution. 

For example, associating a unique “member” name with 
each node in the cluster is crucial to being able to track 
activity on specific nodes across a node or cluster restart. 
When nodes are created, they are assigned a unique “ID,” but 
this ID can change from run to run and cannot be used to track 
activity on the node. The command line option  
“–tangosol.coherence.member=NNN” can be used to assign 
a unique name that is retained across invocations so a node’s 
activity can be stored in a database, for example, and analyzed 
over time. Additionally, assigning a machine ID in a similar 
way can be helpful in clarifying cluster topology. 

Several other topics are deserving of complete treatment 
in papers of their own, and will be discussed only briefly here. 

Understanding memory utilization in Coherence clusters 
is complicated. The number one culprit is JVM memory heap 
utilization and garbage collection. Memory usage reported by 
Coherence does not account for garbage in memory and 
cannot be relied upon to understand true memory 
consumption. This data must be correlated with JVM metrics 
on garbage collection in order to get a complete picture of 
current memory usage, the trend of which can be an important 
trigger for possible cluster failures. 

Additionally, it is often important to understand how 
memory is allocated and consumed in each cache on each 
service on each node. This is complicated by the fact that users 

must configure cache services to report memory in bytes 
instead of objects; front caches report usage only in terms of 
objects and thus the memory usage can only be estimated by 
multiplying number of objects by average object size 
(obtained from back caches). 

A further complication is that Coherence only reports the 
amount of memory consumed by primary data. One has to 
calculate the memory consumed by back storage by 
accounting for the configured backup count parameter. Index 
data for caches is another problem. There is currently no way 
to determine precisely the amount of memory consumed by 
index data associated with a particular cache, and these data 
can be as large as the data stored in the cache. 

Coherence also provides no information about where 
specific data are located (on which node or partition). A 
commonly seen issue is related to “hot keys” or specific 
objects that are accessed heavily. It is not easy to see what 
these are and to troubleshoot the effects on the cluster of 
access patterns that are not balanced. 

Each of these areas deserves further study so that adequate 
solutions can be developed to assist Coherence users in the 
future. 

VII. SUMMARY 

Oracle Coherence is a superb piece of technology that 
implements distributed caching. There are numerous mission-
critical applications that simply would not be possible or could 
not perform adequately without the underlying Coherence 
cache infrastructure. However, there are significant challenges 
to monitoring Coherence effectively to ensure uptime and 
performance. 

This paper has attempted to demystify the complex JMX 
MBean schema that is provided by Coherence, highlighting 
ways that the data produced can be used effectively in a 
monitoring application. 

Additionally, some of the limitations inherent in present 
versions of the Coherence JMX MBeans were discussed. 
While there is a lot of information about storage behavior, 
there is not as much about process behavior. This paper 
suggested several techniques that can be used to help identify 
and isolate causes of trouble in the cluster. 
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