
1

RTView
Technical Note
SL Corporation 18 January 2016
TN-712

How to Bring TIBCO
Monitoring Metrics and
Alerts into Splunk
Dashboards Using RTView

RTView Enterprise Monitor is a mature and robust platform that collects, analyzes, and archives
monitoring data from a broad range of middleware products, from TIBCO and other vendors, as well
as open source solutions. This article describes in detail how any of the current or historical metrics
collected by RTView, as well as the alerts it generates, can be imported and made visible in custom
dashboards created using Splunk. This permits Splunk users to quickly get visibility into a broad
range of middleware monitoring information, without having to develop and maintain the
collection and analytics functions already contained within RTView.

RTView and Splunk – Background
RTView has become the de facto standard for monitoring complex applications built around

middleware components such as the TIBCO suite of messaging, business process, and analytics
products. Many TIBCO customers use RTView component monitoring products purchased through
TIBCO, or the complete and comprehensive RTView Enterprise Monitor suite obtained directly from SL
Corporation.

Despite strong competition from open source, much of IT has embraced Splunk for its powerful
log analysis features, as well as its ability to ingest, store, visualize, monitor, and analyze virtually any
type of data. Splunk provides a simple UI for building dashboards, and many API/SDK options which
have spawned a variety of user-supported apps and add-ons (available for download at
https://splunkbase.splunk.com/).

However, you will find little support for TIBCO-centric monitoring data in splunkbase. This is
partly due to the fact that it's simply not that easy to do it well. In order to monitor TIBCO apps, you
need to use the proprietary "Hawk" protocol and EMS Admin API, and perform additional processing
on the collected metrics. SL's RTView dataserver natively supports Hawk and makes it painless to
collect metrics for BusinessWorks, BusinessEvents, EMS, and other TIBCO solutions. In this technical
note, we describe a simple and cost-effective way to get this important data into Splunk.

RTView Dataserver Basics
The RTView dataserver is the collection component for the RTView EM suite. Architecturally, any

number of dataservers may be distributed in local or remote datacenters to collect host, network, or
application metrics. A central set of servers handle alerting, configuration management, and display,
but these servers "refer" to the dataservers as necessary to reference data rather than aggregating
the data locally. Hence, the architecture scales as needed to support very large populations of

2

monitored resources. But, for purposes of this article, we'll look at deploying only a single dataserver
and exposing the data it collects to Splunk.

Our test dataserver is configured by specifying the appropriate "solution packages" and
corresponding properties. A solution package is a bundled collection of cache definitions, cache source
files (templates for data acquisition), alert definitions, and user interface displays. As an example, the
following properties configure the dataserver to collect host data via hawk.

rtvapm_package=hawkmon
rtvapm_package=hostbase
collector.sl.rtview.hawk.hawkconsole sl_qa ems sl_qa tcp://10.16.200.118:7222 admin -
collector.sl.rtview.hawk.agentGroup WIN_AGENTS SLHOST16(sl_qa) SLHOST15(sl_qa)

The hostbase package contains the basic caches, alerts, and displays needed for generic host
metrics, regardless of the protocol used to collect these metrics. The hawkmon add-on adds support
for collection of host metrics via hawk. Hawk messages can be carried by either of two different
transports. The "ems" transport is TIBCO's Enterprise Message Server. (Alternatively, the Rendezvous
messaging middleware could be specified by using "rv".) The example hawkconsole property defines a
connection to an EMS server topic, and the agentGroup specifies that we collect for two specific hosts
whose hawk microagents are also configured to use ems.

When a dataserver is started with this configuration, we can access the collected host metrics via
the following REST query to the dataserver.

http://<hostname>:8068/hostbase_rtvquery/cache/HostStats/current

By default, the response format will be XML, as shown below, where a row of metadata describes
the data columns followed by a row of data for each host (some data omitted for brevity). For use
with splunk, we'll tack "?fmt=json" to this query to get our results in an easier-to-parse json format:

<?xml version="1.0"?>
<dataset>
 <metadata>
 <column name="time_stamp" type="date"/>
 <column name="domain" type="string"/>
 <column name="hostname" type="string"/>
 <column name="OS_Name" type="string"/>
 <column name="OS_Version" type="string"/>
 <column name="Uptime" type="long"/>
 <column name="numCPUs" type="int"/>
 <column name="MemTotal" type="double"/>
 <column name="MemUsed" type="double"/>
 <column name="MemFree" type="double"/>
 <column name="MemUsedPerCent" type="double"/>
 <column name="userPerCentCpu" type="double"/>
 <column name="systemPerCentCpu" type="double"/>
 <column name="idlePerCentCpu" type="double"/>
 <column name="usedPerCentCpu" type="double"/>
 </metadata>
 <data>

3

 <row>
 <time_stamp>1450987153921</time_stamp>
 <domain>myHawkDomain</domain>
 <hostname>SLHOST15(sl_qa)</hostname>
 <OS_Name>Win32</OS_Name>
 <OS_Version>6.1</OS_Version>
 <Uptime>7525657</Uptime>
 <numCPUs>2</numCPUs>
 <MemTotal>8192.0</MemTotal>
 <MemUsed>3733.26171875</MemUsed>
 <MemFree>4458.73828125</MemFree>
 <MemUsedPerCent>45.57</MemUsedPerCent>
 <userPerCentCpu>5.069760901455278</userPerCentCpu>
 <systemPerCentCpu>-1.0</systemPerCentCpu>
 <idlePerCentCpu>94.93023909854472</idlePerCentCpu>
 <usedPerCentCpu>5.0697609014552825</usedPerCentCpu>
 </row>
 <row>
 <time_stamp>1450987137189</time_stamp>
 <domain>myHawkDomain</domain>
 <hostname>SLHOST16(sl_qa)</hostname>
 <OS_Name>Win32</OS_Name>
 <OS_Version>6.1</OS_Version>
 <Uptime>6914605</Uptime>
 <numCPUs>4</numCPUs>
 <MemTotal>8192.0</MemTotal>
 <MemUsed>7304.38671875</MemUsed>
 <MemFree>887.61328125</MemFree>
 <MemUsedPerCent>89.16</MemUsedPerCent>
 <userPerCentCpu>9.086940514895092</userPerCentCpu>
 <systemPerCentCpu>-1.0</systemPerCentCpu>
 <idlePerCentCpu>90.91305948510491</idlePerCentCpu>
 <usedPerCentCpu>9.08694051489509</usedPerCentCpu>
 </row>
 </data>
</dataset>

Configuring Splunk to Get RTView Data

In order to query the RTView dataserver
from splunk, download the REST add-on from
splunkbase which can be found at
https://splunkbase.splunk.com/app/1546/.
Install the add-on by selecting "Manage Apps"
from the "App" menu in the upper left corner
of your browser window. In the Apps window,
click the "Install app from file" button, use the
"Browse..." button to set the path to the
downloaded file, and click "Upload".

4

After the REST interface is installed, you'll need to update a python script to handle the specific
json format returned by queries to the RTView dataserver. Edit
"<SplunkHome>/etc/apps/rest_ta/bin/responsehandlers.py" and add the following code:

class slRtvEventHandler:

 def __init__(self,**args):
 pass

 def __call__(self, response_object,raw_response_output,response_type,req_args,endpoint):
 if response_type == "json":
 parsedJson = json.loads(raw_response_output)
 for rtvDataRow in parsedJson["data"]:
 rtvDataRow["Timestamp"] =

datetime.datetime.fromtimestamp(rtvDataRow["time_stamp"]/1000).strftime('%d-%b-%Y %H:%M:%S')
 print_xml_stream(json.dumps(rtvDataRow))
 else:
 print_xml_stream(raw_response_output)

We'll use this class when configuring connections to REST-ful endpoints in the next sections. The
slRtvEventHandler converts the json returned by queries to the RTView dataserver into python
objects, then extracts the "data" section containing rows of tabular data and writes each row to
Splunk as separate events. (If this is not done, Splunk treats the entire query result as an "event"
object and it will be difficult to pull it apart to display in Splunk views.)

Before pushing each event to Splunk, you can optionally enrich the data in various ways. Here, we
reformat the integer timestamp into a date/time string. Note that Splunk can also perform simple
transformations like this example, but it may sometimes be advantageous to persist these changes in
the stored data in order to optimize searches.

Ingest Host Metrics Collected via Hawk
Given a working dataserver and Splunk with the REST add-on, we can now configure a connection

to pull data into Splunk. Click the "Settings" menu item in the splunk browser interface and select
"Data inputs", then click on the "add new" action for the REST type. Configure the connection fields
with the following values:

Endpoint URL: http://<dataserver url:port>/hostbase_rtvquery/cache/HostStats/current
HTTP Method: GET
URL Arguments: fmt=json
Response Type: json
Response Handler: slRtvEventHandler
Request Timeout: 10
Backoff Time: 60
Polling Interval: 30

5

Set sourcetype: Manual
Source type: rtv_hostbase

Save these settings, and then go to the "App: Search & Reporting" screen and click the "Data
Summary" button. On the "Data Summary" pop-up, the "Sourcetypes(*)" tab should now show that
data for a new source type "rtv_hostbase" is available. Click on this source type and examine the
events. The search string for this display is simply "sourcetype=rtv_hostbase". We'll want to create
tabular reports to visualize this data, so set the search time to a "1-minute window" in "Real time" and
paste the following into the search window:

sourcetype=hostbase | dedup hostname sortby +_time | eval
usedPerCentCpu=round(usedPerCentCpu,2),swapUsedPerCent=round(swapUsedPerCent,2),Me
mUsedPerCent=round(MemUsedPerCent,2),MemFree=round(MemFree,1),VMemTotal=round(
VMemTotal,1) | sort hostname | table
Timestamp,hostname,OS_Description,usedPerCentCpu,MemTotal,MemFree,MemUsedPerCent
,VMemTotal,VMemUsedPerCent,swapTotal,swapUsedPerCent,agentClass

The dedup clause de-duplicates the data (as indexed by hostname) so that no matter how many
samples RTView may return each minute, Splunk will display the latest sample for each host. Now save
this search as a report and open the report to see the following:

The Note the “Expired” column added to the tabular host data by RTView. This boolean indicates
that RTView was unable to collect new data for the monitored resource during the last collection
period. Normally, you would add Splunk alerts to catch the cases where a key metric (e.g.,
“usedPerCentCpu”) was above a threshold. Adding an alert on the “Expired” status will let you know
when the resource is not available. If the resource does not recover within a configurable
“rowExpirationTimeForDelete”, the expired data will be dropped from the RTview cache, and will then
disappear from the Splunk displays.

This report can be used as-is, or included in dashboards like the following:

6

The following search was used to create the trend chart:

sourcetype=hostbase | timechart span=1m avg(usedPerCentCpu) by hostname

The timechart command averages the data collected for each host to one minute resolution. This
resampling makes it easy to compare CPU utilization across multiple hosts in a tabular view, as shown
below.

The preceding dashboard displayed data for two test hosts. In a more realistic setting with
perhaps hundreds of hosts, you'll want to use Splunk's filtering or aggregation commands to limit the
data displayed. For example, you could sort on "usedPerCentCpu", then use the "head" command to
limit the panels to the top ten resources with the highest CPU utilization. Or, use the "top" command
on "agentClass" to see the distribution of Hawk versions deployed in your enterprise.

Add Metrics for TIBCO EMS and Business Works
As additional examples of ingesting TIBCO data into Splunk, we'll look at data from

BusinessWorks and the EMS messaging bus in the following sections. It's simple to add the collection
of EMS and BW data, by specifying additional RTView packages to the dataserver configuration and
restarting the dataserver:

rtvapm_package=emsmon
rtvapm_package=bwmon

7

Once the EMS and BW metrics are being collected by the dataserver, simply configure another
REST endpoint (see above, "Ingest Host Metrics Collected via Hawk") for EMS data; use an
appropriate URL and source type.

Endpoint URL: http://<dataserver IP:port>/emsmon_rtvquery/cache/EmsServerInfo/current
Source type: rtv_emsserverinfo

Save the endpoint, then switch to the Apps:Search page, click "Data Summary" and verify that
data is being collected for the new source type. Click on the new source type to see the new data and
edit the search string as shown in the following image.

For Business Works, configure a REST endpoint for BW data as in the previous section.

Endpoint URL: http://<dataserver IP:port>/bwmon_rtvquery/cache/BwEngines/current
Source type: rtv_bwengine

Save the endpoint, then switch to the Apps:Search page, click "Data Summary" and verify that
data is being collected for the new source type. Click on the new source type to see the new data and
edit the search string as shown in the following image.

8

In the sections above, we have shown how to display metrics from hosts, EMS servers, and BW
engines. It is important to note that the RTView dataserver also provides extensive alert configuration
and management functionality. The state and detail of all alerts generated in an RTView dataserver
may be imported into Splunk, using the same mechanism described above.

Conclusion

As demonstrated, it is quite easy to pull data from RTView into Splunk, where you can easily
manipulate it for display in Splunk dashboards. (Note that the focus in this article is on TIBCO data, but
this same technique applies for all data monitored by RTView, be it Oracle, IBM, Open Source, or
other.) The benefits of this approach include robust and easily configured RTView collection that exists
today without the need to create and deploy your own specialized collectors, the ability to create
views of this data in Splunk that are easily maintained to meet your needs over time.

The solution we've discussed here uses a single component of the RTView EM architecture - the
RTView dataserver. EM is a mature platform that easily scales to meet the needs of the smallest to the
largest of the fortune 500 companies. Hence, as new monitoring requirements crystallize, you can be
confident that a growth path exists to further complement and expand your monitoring and analysis
capabilities.

